
Extended Abstract

Motivation Language models trained on DNA sequences, or so-called genomic language models
(gLMs), have been shown to achieve robust performance on biological prediction and generation
tasks, in particular recently developed models like Evo 2 [1] and GPN [2]. When using these models
for generative design tasks, it is important to ensure confidence that the pathogenic potential of novel
designs is well known by researchers using the models. These models may be prompted with a
sequence and asked to assign it a biological plausibility or likelihood which may be used as a proxy
for pathogenicity. Aligning models using reinforcement learning by training them to assign a lower
likelihood for pathogenic sequences should increase biological safety of generations.

Method Direct Preference Optimization (DPO) was utilized to encourage the model to prefer
benign variants over pathogenic ones. To do so, a dataset of genes was required. ClinVar [3] was
used to obtain annotated data for over 1600 genes. Data was stored by gene, including the promoter
region, pathogenic variant, benign variant, and wild type variant sequences. We use the standard DPO
loss with the aforementioned completions. Note that we reformulate DPO slightly for the case of
MLM, in which logits are computed with bidirectional context around the mutated single nucleotide
polymorphism (SNP). We define loss only over the mutated nucleotide to avoid washing out training
signal. For method comparison, pretrained GPN as well as GPN that was fine-tuned with supervised
finetuning (SFT) were included for comparison. Models were then assessed at their accuracy in
assigning lower likelihood to pathogenic genes versus their benign counterparts for 300 held out
genes.

Implementation ClinVar was accessed using the biopython package that has the capability to
query various National Center for Biotechnology Information (NCBI) databases. A list of genes was
passed into a script that read each gene and queried the ClinVar SNP database with added search terms
"pathogenic" and "benign" based on the type of SNP being acquired. The wild type sequence was
then obtained by querying the "nucleotide" NCBI database for the corresponding whole chromosome
version that the SNP referenced, storing it locally for future use, and splicing it at the indices of the
gene. For training, a custom pytorch training loop was written in conjunction with the GPN model
and tokenizer hosted on Hugging Face. A custom pytorch dataloader was written for the SFT and
DPO settings.

Results GPN untrained performed the best at the task with respect to having the highest accuracy
compared to both SFT and DPO-trained models. DPO performed the best when comparing the sum
of differences between preferred and dispreferred variant pairs, meaning that the distance between
the likelihood given for one sequence versus its partner (preferred and dispreferred) was much greater
during DPO evaluation than for the other two models. Evaluation on the training data indicates that
the model did not overfit, where comparable accuracy was observed across train and test data. We
identify 29 cases of genes which are correctly classified by the DPO model but incorrectly classified
by the base model.

Discussion DPO successfully encouraged larger separation between the calibrated log probability
of preferred and dispreferred sequences, suggesting that even though it is not the most accurate model,
it is the most confident. A reasonable explanation for why the SFT and DPO model performed worse
than the base model on the accuracy metric is the fact that ClinVar data is known to be inconsistent
in quality and collected from a large number of studies. It is also biased to variants that are not too
harmful, given that they must propagate in at least 1% of the population.

Conclusion It is evident that biological foundation models are able to learn much about pathogenic-
ity from evolutionary data. It is not clear that DPO-style finetuning can improve variant effect
prediction, and an actionable next step to move forward is to acquire a less-biased, higher quality data
set. Experiments should also be repeated with a larger training set to observe scaling performance
during training. If a promising model is produced, experimental validation would be necessary to test
novel mutations predicted by the base model and finetuned model.

https://huggingface.co/songlab/gpn-animal-promoter
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Abstract

Language models trained on DNA sequences have been shown to achieve robust
performance on biological prediction and generation tasks, with applications to
genetic risk assessment, therapeutic engineering, and synthetic biology [4, 2, 1, 5].
Genomic language models have been applied to the task of variant effect prediction,
in which model likelihoods serve as a proxy for the model’s inferred fitness for
a genetic variant. In this paper, we seek to align a genomic language model with
mutation pathogenicity data by using direct preference optimization (DPO) on
clinical variants. We leverage clinically annotated data for single nucleotide poly-
morphisms (SNPs) from ClinVar [3] in a reinforcement learning framework. We
hypothesize that aligning gLMs toward benign variants and away from pathogenic
variants will enable them to make more accurate predictions for unknown variants
and improve their biological safety when used downstream for de novo biological
generation. After comparison on untrained, SFT-trained, and DPO-trained models
we see the untrained model performed the at the highest accuracy compared to
both SFT and DPO-trained models. DPO, however, introduced greater spread in
the data. Evaluation on training data indicated low likelihood of overfitting which
indicates that training data was not robust or representative enough for successful
finetuning to this task.

1 Introduction

The genomes of organisms encode complex and diverse functions which are realized through the
central dogma of transforming DNA to RNA to protein. DNA is the central “code" that governs life
and gives rise to sophisticated behavior. Despite increasingly advanced biological research, to date
there still remains much that is unknown about the information DNA holds and consequently how to
engineer that information productively. To address this gap, there has been an effort to train language
models on vast corpora of genomic DNA sequences (so called genomic language models, or gLMs).
These models have been shown to achieve robust performance on biological generation and prediction
tasks. For example, the recently developed model Evo 2 is capable of sequence design at the scale of
whole human mitochondrial genomes, minimal bacterial genomes, and yeast chromosomes, as well
as knowledge-based tasks like mutation effect prediction [1].

However, as is common for many foundation models, gLMs perform well across a range of generalized
tasks but suffer a performance gap for specialized domain-specific tasks. For example, many Evo
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2 generations contain unrealistic guanine-cytosine (GC) content, sequence complexity, or low-
confidence translated protein structures, requiring manual filtering by researchers before use in the
wet lab. Similarly, tasks like mutational prediction effect can benefit from specialized training to
teach the model what makes a mutation more or less harmful beyond “blind" knowledge acquired
from unlabeled patterns in the training data.

We focus on the task of pathogenicity prediction. Some mutations in genes are benign (i.e. do not
harm an organism) and others are pathogenic (i.e. cause an undesirable effect on the host). Ideally,
a model would be able to discriminate between pathogenic and benign variants robustly for two
main reasons: (1) this would allow researchers to make more confident predictions about variants of
unknown significance (VUS); and (2) when these genomic language models are used for generation,
the generated sequences align more with biological safety. Current models do moderately well at
variant effect prediction, but there is still room for improvement. We explore reinforcement learning
methods to finetune a variant effect predictor for greater accuracy.

2 Related Work

Biological foundation models have borrowed techniques from natural language processing to pretrain
large transformer-based architectures on biological sequences. Groundwork in this field was laid by
protein language models (pLMs) such as ProteinBERT [6], ProGen [7], ESM [8], and ESM-2 [9].
Through self-supervised pretraining, pLMs learn representations of amino acid sequences that can
be used downstream for structure and residue contact prediction as well as generative tasks such as
controllable sequence design. Recent models trained on DNA sequences have shown that both masked
language modeling and autoregressive pretraining strategies are effective in learning representations
that can recapitulate known biology and generate de novo DNA sequences. Masked language models
include DNABERT [10], Genomic Pretrained Network [4], and Nucleotide Transformer [5], while
autoregressive models include HyenaDNA [11], Evo [11], and Evo 2 [1]. Evo 2 learns from sequence
alone for state-of-the-art prediction performance of noncoding pathogenic mutations and clinically
significant BRCA1 variants without task-specific finetuning. Supervised methods such as Enformer
[12] and Borzoi [13] use a transformer architecture to train a supervised function from the genome
to quantitative output tracks which measure accessibility or gene expression level (e.g. ChIP-seq,
DNase-seq, ATAC-seq, CAGE).

Some recent approaches apply reinforcement learning to biological foundation models for a variety
of downstream tasks. For example, Yang et al. finetunes HyenaDNA on regulatory DNA sequences
for designing cis-regulatory elements [14], in which an MDP is formulated with reward given by
a combination of fitness and whether a transcription factor binding site appears in the generation.
ProteinRL finetunes pLMs to achieve specific desired properties [15]. ProteinDPO uses direct
preference optimization to align the structure-conditioned pLM ESM-IF to experimental fitness data
[16], while RLXF similarly uses supervised finetuning and proximal policy optimization to align
ESM-2 to experimental fluorescence data [17].

Variant effect prediction methods span a long history and include both traditional approaches and
recent deep learning-based approaches. SIFT [18], PolyPhen-2 [19], and CADD [20] use biological
heuristics to estimate pathogenicity of variants. Deep-learning based approaches such as AlphaMis-
sense [21] and EVE [22] use self-supervised pretraining to learn pathogenic amino acid substitutions.
Benegas et al. present TraitGym, two non-coding variant datasets, to benchmark the performance of
gLMs on a binary classification between putatively causal and non-causal genetic variants [2]. Sim-
pler alignment-based methods such as CADD and GPN-MSA [23] are shown to excel at prediction
for Mendelian traits and complex disease traits and outperform large architectures such as Evo 2. To
date, no work exists for aligning genomic or protein language models with reinforcement learning
to increase performance on variant effect prediction, indicating that post-training on variants may
benefit large-scale architectures.

3 Method

We present a reinforcement learning framework for aligning the Genomic Pretrained Network (GPN)
[4] to clinical variant data. GPN uses a standard masked language modeling task during pretraining,
in which a set M of nucleotides is masked during minimization of loss
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Figure 1: Benign and pathogenic SNPs are used as preferred and dispreferred completions in the
finetuning workflow.

LMLM(θ) = − 1

|M |
∑
i∈M

log pθ(xi | x̃),

where x̃ is the masked sequence and xi is the i-th nucleotide position. We present two finetuning
strategies to continue training the base model.

3.1 Supervised Finetuning

Supervised finetuning (SFT) serves as a baseline for the method. We finetune GPN using the cross
entropy loss between the wild type sequence masked at the mutation and the wild type sequence with
the benign SNP. Specifically, given wild type sequence x, we replace mutated position i ∈ {1, . . . , L}
with the mask token to create x̃. The supervised loss is formulated as

LSFT(θ) = −Ex∼D log pθ(x
benign
i | x̃),

where xbenign
i is the benign SNP at nucleotide position i and x̃ is the wild type sequence with position

i masked. During training, we define loss over the mutated residues.

3.2 Direct Preference Optimization

We follow the loss formulation from [24] to finetune GPN with direct preference optimization (DPO):

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x̃)
πref(yw | x̃)

− β log
πθ(yl | x̃)
πref(yl | x̃)

)]
.

πθ is the trainable policy and πref is the reference policy, i.e. the frozen GPN network. Here we define
x̃ to be the wild type sequence x masked at the mutation position. yw is the preferred completion
while yl is the dispreferred completion. In this case, we adapt the DPO loss for use with the masked
language model by feeding in the masked sequence as context to the model. yw is defined to be the
wild type sequence with the benign SNP substituted in, while yl is the wild type sequence with the
pathogenic SNP substituted in. β is the standard inverse temperature parameter controlling reliance
on the reference policy. During training, we define loss over the mutated residues.

4 Experimental Setup

4.1 Dataset

Our finetuning dataset was sourced from ClinVar [3], an NIH-hosted database of gene variants and
their impact on humans. We focused on coding regions (regions of DNA that translate to protein
sequences, as opposed to “intergenic" regions, which are structural and regulatory regions of DNA,
but not necessarily protein-encoding) from ClinVar. We pulled 1620 NCBI gene sequences and
partitioned 60% for training (1056 genes), 20% for validation (264), and just under 20% for testing
(300). Each gene we use has a single nucleotide polymorphism (SNP) classified as pathogenic or
likely pathogenic. Considering that the base model is trained with MLM bidirectionally, we take a
sequence of length 1536 (i.e. the context window for GPN) centered around the pathogenic SNP. Our
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pytorch data loader returns the wild type sequence (without the pathogenic SNP) as the “preferred"
completion and the wild type sequence with the pathogenic SNP substituted in as the “dispreferred"
completion to be used in DPO. If a benign SNP exists at the same position, we take the preferred
completion to be the wild type sequence with the benign SNP substituted in (Figure 1).

4.2 Training

We train the SFT and DPO models each for 50 epochs with AdamW optimizer and learning rate 1e-5.
For DPO, we use the standard temperature setting β = 0.1. We define loss only over the mutated
nucleotide to avoid washing out training signal for both settings. We show training and validation
loss perplexity over 50 epochs (Figure 2) for the DPO setting. Note that a perplexity of 1 corresponds
to perfect model performance, while a perplexity of 4 indicates near-random performance over the
nucleotide vocab set.

Figure 2: Training and validation perplexity curves for DPO finetuning.

4.3 Evaluation

We used the model’s predicted likelihood of a sequence as a proxy to gauge how pathogenic the model
believes it to be. This makes sense biologically, because a model trained on evolutionary genomic
data would have seen pathogenic variants less often (due to competitive selection) and thus consider
them less likely. Here we evaluate on the 300 genes in the held-out set to check whether likelihood
decreases in a dispreferred variant, with respect to the preferred variant. This can be easily checked
by subtracting the likelihood of the preferred variant from the likelihood of the dispreferred variant.
Positive results are desired and negatives ones indicate where the model is performing weakly.

5 Results

5.1 Quantitative Evaluation

We evaluated the base GPN, SFT, and DPO models on the likelihood assignment task described in the
previous section. Initially surprisingly, GPN out of the box performed the best at the task with respect
to having the highest accuracy (percent of genes where the preferred SNP had higher likelihood when
compared to their dispreferred counterpart) compared to both SFT and DPO-trained models (Figure
3), indicating a strong baseline. This agrees with findings from the TraitGym benchmark [2].

This does not mean that our finetuning efforts were in vain. Another aspect of the results is how
large the difference between the calibrated log likelihood for preferred versus dispreferred SNPs is.
A model that discriminates the two variants with a high difference in likelihood can be thought of
as more confident model, regardless of the accuracy, once the likelihood is calibrated to a common
scale. To calculate this model confidence score, we compute:
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Figure 3: The accuracy of the three training modalities

∑
i

(l(vpreferred)− l(vdispreferred))

where l(x) is the log-likelihood function and v is a variant specified by its subscript. Notably,
we penalize this model score for differences that are in the wrong direction (negative, meaning
l(vdispreferred) > l(vpreferred)), so this model score is representative of confidence in the correct direc-
tion.

The results of this calculation is in Figure 4. The DPO model does the best at separating preferred
and dispreferred variants overall. This indicates that the DPO model contributes some discriminatory
value that may not be apparent when just looking at the accuracies. Notably, the base model does the
worst by this metric, which makes sense because it is not specifically trained to discriminate between
variants.

Figure 4: The accuracy of the three training modalities using the proposed model confidence score.

5.2 Qualitative Analysis

Visualizations of individual data points can be found below. Each point represents the result of

l(vpreferred)− l(vdispreferred).

Red markers in the scatter plot and red descending trajectories in the slope chart represent success at
the task (a positive difference between preferred and dispreferred likelihoods). Higher markers on the
y-axis of the scatter plot and darker red and steeper slopes on the slope chart represent higher degrees
of accurate separation between preferred and dispreferred variants.
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(a) Difference of the log likelihoods of preferred and
dispreferred variants

(b) Slope plot of base model predicted likelihood of
sequences

Figure 5: Base model results for the task of likelihood assigment to benign vs. pathogenic sequences.

(a) Difference of the log likelihoods for SFT (b) Slope plot for SFT

Figure 6: Results following SFT for the task of likelihood assignment to benign vs. pathogenic
sequences.

(a) Difference of the log likelihoods for DPO (b) Slope plot for DPO

Figure 7: Results following DPO for the task of likelihood assignment to benign vs. pathogenic
sequences.

Note that all of the slope plots above do not share the same color scale; if they did, we would see
very faint colors for the base and SFT models, and more distinct colors for the DPO model. This is a
direct result of the differences having higher magnitude in the DPO model as discussed above.

We also plotted the results similarly for the training data in Figure 8 to ensure that suboptimal
performance was not due to overfitting of the model. In Table 1, the accuracies are reported for each
model on each dataset split. As one can see from both, the results are not remarkably different when
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comparing the training set performance and evaluation set performance for the base model, SFT
model, and DPO model. This indicates that rather than overfitting, there may be some misalignment
between the training objective and the downstream task used to measure model accuracy. Future
work should consider how to bridge this gap.

Figure 8: Results of evaluating the training data using the SFT and DPO models.

Split Model Task accuracy
Train Base 0.83
Train SFT 0.70
Train DPO 0.69
Test Base 0.79
Test SFT 0.66
Test DPO 0.66

Table 1: Train and test accuracies of the models on the variant classification task.

5.3 Introspection of genes with differential performance

We investigate the set of genes for which the DPO model produced a correct classification (i.e.
difference of log likelihoods above 0) of the sequence while the base model produced an incorrect
classification (i.e. difference of log likelihoods below 0). We find 29 genes which meet this criteria.
We provide a representative sample of these genes and their importance in biomedical research in
Table 2, showing the utility of the finetuning method for these particular cases.

6 Discussion

There are a couple of salient points to take away from the results. First, DPO encouraged more
separation in the log probabilities when compared to SFT and the base model (Figure 4). As discussed
above, DPO seemingly proves reliable at creating a wider disparity between assigned pathogenic and
benign sequence probability, perhaps suggesting the model is more confident than the others. If it
was trained to a point of higher accuracy, this would be a preferred model to use.
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Gene Research relevance
MAOA Widely studied for links to aggression, mental health, and Brunner syndrome.

ASPM One of the key genes controlling brain size; famous for causing primary microcephaly.

TGM1 Causes lamellar ichthyosis, a textbook skin disease.

FKTN Central in muscular dystrophy research (Fukuyama dystrophy).

PDHA1 Causes pyruvate dehydrogenase deficiency, a widely known metabolic disorder.

GRM7 Heavily studied for its role in epilepsy, depression, and schizophrenia.

ADRA2A Commonly referenced in studies of ADHD, blood pressure, and stress response.

PLA2G4A Important in inflammation and cancer research; involved in lipid signaling pathways.

ANGPT2 A target in cancer and vascular disease therapies; widely studied in angiogenesis.
Table 2: Relevant genes for which the DPO model correctly classified pathogenicity but the base
model did not.

Second, the pretrained GPN serves as a strong baseline for variant effect prediction and achieves state-
of-the-art performance without SFT or DPO on variant classification. This represents the robustness
of training models on evolutionary data in capturing some understanding of the pathogeniety of low
fitness mutations. However, we would still expect finetuning to make the model better at the task at
hand, not worse. A likely cause for this disparity is the quality of the data we trained on. ClinVar is
known among the research community to be inconsistent in quality, and somewhat biased to common
variants. Notably, since all variants must be present in at least 1% of the population, truly deleterious
variants are not represented in ClinVar. This means that the data is implicitly biased toward positive
samples. Thus, one may have to correct for that bias or more carefully curate the data set. We envision
that this is the most important next step to creating a successful DPO-finetuned model.

7 Conclusion

Through this project, we have seen that biological information, specifically that which represents the
fitness of genomic variations is accessible through genomic foundation models. While we had hoped
that attempts at finetuning using DPO would have increased a genomic language model’s ability to
make accurate variant effect predictions, this was not the case. However, much was learned about the
different approaches to finetuning and tangible next steps.

Though performance accuracy did not improve, DPO may still act as a viable method for increasing
such biological preference tasks when finetuning with a more robust and potentially representative
data set.

The base model’s higher performance on the quantitative task demonstrates the robustness of training
models on evolutionary data in capturing some understanding of the historical pathogenicity of
known low fitness mutations. However, the question of the depth of understanding of the underlying
pathogenicity of a SNP remains unanswered with the decline in performance by the two finetuned
models. It remains unclear if gLMs such as GPN would be successful at performing a similar task
with novel mutations. Future work to evaluate the model’s pathogenicity prediction for a new SNP
followed by experimental validation could serve to broaden understanding in this regard.

8 Team Contributions

• Alejandro: Project Ideation, Model Training, Deliverables
• Mohini: Project Ideation, Model Evaluation, Deliverables
• Samantha: Project Ideation, Dataset Generation, Deliverables

Changes from Proposal Language Model for Experimentation, Finetuning Method, and Evaluation
Method: We initially tried to train Evo 2 with DPO. After discussing with the authors, we decided
to switch to a recent gLM that is compatible with Hugging Face’s API, GPN-Promoter. We note
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competitive performance of GPN-based models against Evo 2 on variant effect prediction. We also
initially proposed aligning the genomic language model (gLM) Evo 2 to protein fitness data (pLDDT).
After noting that it was too costly to run the required AlphaFold3 forward pass for each sequence,
we shifted to looking at aligning gLMs to human clinical variants to improve biological safety of
generations.
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